2.1 MAPREDUCE 示例编写及编程规范

2.1.1 编程规范

(1)用户编写的程序分成三个部分MapperReducerDriver(提交运行mr程序的客户端)

(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)

(3)Mapper的输出数据是KV对的形式(KV的类型可自定义)

(4)Mapper中的业务逻辑写在map()方法中

(5)map()方法(maptask进程)对每一个<K,V>调用一次

(6)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV

(7)Reducer的业务逻辑写在reduce()方法中

(8)Reducetask进程对每一组相同k<k,v>调用一次reduce()方法

(9)用户自定义MapperReducer都要继承各自的父类

(10)整个程序需要一个Drvier来进行提交,提交的是一个描述了各种必要信息的job对象

 

1.7.2 wordcount示例编写

需求:在一堆给定的文本文件中统计输出每一个单词出现的总次数

(1)定义一个mapper

//首先要定义四个泛型的类型

//keyin:  LongWritable    valuein: Text

//keyout: Text            valueout:IntWritable

 

public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{

//map方法的生命周期:  框架每传一行数据就被调用一次

//key :  这一行的起始点在文件中的偏移量

//value: 这一行的内容

@Override

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

//拿到一行数据转换为string

String line = value.toString();

//将这一行切分出各个单词

String[] words = line.split(" ");

//遍历数组,输出<单词,1>

for(String word:words){

context.write(new Text(word), new IntWritable(1));

}

}

}

 

(2)定义一个reducer

//生命周期:框架每传递进来一个kv 组,reduce方法被调用一次

@Override

protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

//定义一个计数器

int count = 0;

//遍历这一组kv的所有v,累加到count

for(IntWritable value:values){

count += value.get();

}

context.write(key, new IntWritable(count));

}

}

 

(3)定义一个主类,用来描述job并提交job

public class WordCountRunner {

//把业务逻辑相关的信息(哪个是mapper,哪个是reducer,要处理的数据在哪里,输出的结果放哪里……)描述成一个job对象

//把这个描述好的job提交给集群去运行

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job wcjob = Job.getInstance(conf);

//指定我这个job所在的jar

//wcjob.setJar("/home/hadoop/wordcount.jar");

wcjob.setJarByClass(WordCountRunner.class);

wcjob.setMapperClass(WordCountMapper.class);

wcjob.setReducerClass(WordCountReducer.class);

//设置我们的业务逻辑Mapper类的输出keyvalue的数据类型

wcjob.setMapOutputKeyClass(Text.class);

wcjob.setMapOutputValueClass(IntWritable.class);

//设置我们的业务逻辑Reducer类的输出keyvalue的数据类型

wcjob.setOutputKeyClass(Text.class);

wcjob.setOutputValueClass(IntWritable.class);

//指定要处理的数据所在的位置

FileInputFormat.setInputPaths(wcjob, "hdfs://hdp-server01:9000/wordcount/data/big.txt");

//指定处理完成之后的结果所保存的位置

FileOutputFormat.setOutputPath(wcjob, new Path("hdfs://hdp-server01:9000/wordcount/output/"));

//yarn集群提交这个job

boolean res = wcjob.waitForCompletion(true);

System.exit(res?0:1);

}

 

 

 

2.2 MAPREDUCE程序运行模式

2.2.1 本地运行模式

(1)mapreduce程序是被提交给LocalJobRunner在本地以单进程的形式运行

(2)而处理的数据及输出结果可以在本地文件系统,也可以在hdfs

(3)怎样实现本地运行?写一个程序,不要带集群的配置文件(本质是你的mr程序的conf中是否有mapreduce.framework.name=local以及yarn.resourcemanager.hostname参数)

(4)本地模式非常便于进行业务逻辑的debug,只要在eclipse中打断点即可

 

如果在windows下想运行本地模式来测试程序逻辑,需要在windows中配置环境变量:

HADOOP_HOME%  =  d:/hadoop-2.6.1

%PATH% =  HADOOP_HOME\bin

并且要将d:/hadoop-2.6.1libbin目录替换成windows平台编译的版本

 

 

2.2.2 集群运行模式

(1)mapreduce程序提交给yarn集群resourcemanager,分发到很多的节点上并发执行

(2)处理的数据和输出结果应该位于hdfs文件系统

(3)提交集群的实现步骤:

A、将程序打成JAR包,然后在集群的任意一个节点上用hadoop命令启动

     $ hadoop jar wordcount.jar cn.itcast.bigdata.mrsimple.WordCountDriver inputpath outputpath

B、直接在linuxeclipse中运行main方法

(项目中要带参数:mapreduce.framework.name=yarn以及yarn的两个基本配置)

C、如果要在windowseclipse中提交job给集群,则要修改YarnRunner

 

mapreduce程序在集群中运行时的大体流程:

 

附:在windows平台上访问hadoop时改变自身身份标识的方法之二:

 

 

 

3. MAPREDUCE中的Combiner

(1)combinerMR程序中MapperReducer之外的一种组件

(2)combiner组件的父类就是Reducer

(3)combinerreducer的区别在于运行的位置:

Combiner是在每一个maptask所在的节点运行

Reducer是接收全局所有Mapper的输出结果;

(4) combiner的意义就是对每一个maptask的输出进行局部汇总,以减小网络传输量

具体实现步骤:

1、 自定义一个combiner继承Reducer,重写reduce方法

2、 job中设置:  job.setCombinerClass(CustomCombiner.class)

(5) combiner能够应用的前提是不能影响最终的业务逻辑

而且,combiner的输出kv应该跟reducer的输入kv类型要对应起来